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ABSTRACT

In this paper, we study different types of symmetries for the Tanaka–

Webster connection of contact strictly pseudo-convex pseudo-Hermitian

CR manifolds.

1. Introduction

A contact manifold (M, η) is a smooth manifold M2n+1 together with a global

one-form η such that η ∧ (dη)n 6= 0 everywhere on M . This means that dη has

maximal rank 2n on the contact distribution D = ker η. Given a contact man-

ifold, we can consider two associated structures. One is an associated Rieman-

nian metric g and we obtain a contact Riemannian manifold (M ; η, g). The

other is a pseudo-Hermitian and strictly pseudo-convex structure (η, L),

where L is the Levi form associated with an endomorphism J on D such that

J2 = −I. Here, J defines an almost CR structure H = {X−iJX : X ∈ D}. We
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obtain a contact strictly pseudo-convex, pseudo-Hermitian manifold

(or almost CR manifold) (M ; η, L). There is a one-to-one correspondence

between the two associated structures by the relation

g = L + η ⊗ η,

where we denote by the same letter L the natural extension (iξL = 0) of the

Levi form to a (0,2)-tensor field on M . So, contact Riemannian structures go

hand in hand with contact strictly pseudo-convex almost CR structures. For

theoretical considerations, it is desirable to have integrability of the almost

complex structure J on D. If this is the case, we speak of an (integrable)

CR structure and of a CR manifold. When we look at a contact mani-

fold from the Riemannian point of view, i.e., we consider the contact metric

manifold (M ; η, g), the presence of (metric) symmetries is an important topic.

In particular, the question comes up when a contact metric manifold is locally

symmetric, i.e., when its Riemannian curvature tensor R satisfies

∇R = 0.

Quite recently, the authors have proved in [13] that a locally symmetric contact

metric space is either Sasakian and of constant curvature 1 or locally isomet-

ric to the unit tangent sphere bundle of a Euclidean space with its standard

contact metric structure. (For Sasakian manifolds, the situation had been clear

already for a long time by work of Okumura [24].) This result means that

local symmetry is too strong a condition to impose in contact geometry. For

this reason, T. Takahashi ([27]) introduced Sasakian locally ϕ-symmetric

spaces, which may be considered as the analogues of locally Hermitian symmet-

ric spaces. He calls a Sasakian manifold locally ϕ-symmetric if the Riemannian

curvature tensor R satisfies

(∗) g((∇XR)(Y, Z)V, U) = 0

for all vector fields X, Y, Z, V and U orthogonal to ξ. He proves that this con-

dition is equivalent to having ϕ-geodesic symmetries which are local automor-

phisms. Later, it was proved in [8] that the isometry property of the ϕ-geodesic

symmetry is already sufficient. For the broader class of contact Riemannian

manifolds, we have two generalizations for the notion of local ϕ-symmetry. In

[7], a contact Riemannian manifold is called locally ϕ-symmetric if it satisfies
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the same curvature condition (∗) as in the Sasakian case. This is a very work-

able definition from the technical point of view, but it is still unclear what it

means geometrically when the contact manifold is not Sasakian or K-contact.

In [14], the authors give a different definition for a locally ϕ-symmetric con-

tact Riemannian manifold: they require the characteristic reflections (i.e., the

reflections with respect to the integral curves of ξ) to be local isometries. This

geometric definition leads to an infinite number of curvature conditions, includ-

ing (∗). The first type of symmetry is therefore called local ϕ-symmetry

in the weak sense and the second type local ϕ-symmetry in the strong

sense.

When we look at a contact manifold from the point of view of its (almost)

CR structure, there exists a canonical affine connection, different from the Levi

Civita connection of an associated metric, and invariant under D-homothetic

deformations. This is the Tanaka–Webster connection ∇̂ on a strictly

pseudo-convex CR manifold. In earlier work [16], [17], [18], the second author

started the intriguing study of the interactions between the contact Rieman-

nian structure and the contact strictly pseudo-convex (almost) CR structure,

with the Tanaka–Webster connection playing a major role. In this context, we

now want to define and study analogues of the different types of symmetry men-

tioned above for contact metric spaces. As the pseudo-Hermitian counterpart of

local symmetry, we introduce Tanaka–Webster parallel spaces: these are

strictly pseudo-convex CR manifolds whose Tanaka–Webster torsion tensor T̂

and Tanaka–Webster curvature tensor R̂ are parallel with respect to ∇̂:

∇̂T̂ = 0, ∇̂R̂ = 0.

We classify such spaces completely in Section 4. Next, in an analogous way as

locally ϕ-symmetric contact Riemannian spaces in the strong sense, we define

strongly locally pseudo-Hermitian symmetric spaces by the following

property: all characteristic ∇̂-reflections are affine mappings, i.e., they preserve

the Tanaka–Webster connection ∇̂. We found by chance that it was already

introduced and investigated (cf. [3] or [19]) under another name, a locally sub-

symmetric space, among the studies of the sub-Riemannian geometry. But,

along our own context we determine strongly locally pseudo-Hermitian sym-

metric spaces in the last part of Section 4.
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At the final stage, we define locally pseudo-Hermitian symmetric spaces

in the weak sense to be strictly pseudo-convex CR manifolds whose Tanaka–

Webster curvature tensor R̂ satisfies

g((∇̂X R̂)(Y, Z)V, U) = 0

for all vector fields X, Y, Z, V and U orthogonal to ξ. (They correspond to local

ϕ-symmetry in the weak sense.) In Section 5, we give examples of such mani-

folds and study the three-dimensional ones in some detail. We also show that

this class of spaces is essentially different from the weakly locally ϕ-symmetric

contact metric manifolds.

2. Preliminaries

All manifolds in the present paper are assumed to be connected and of class C∞.

We start by collecting some fundamental material about contact Riemannian

geometry and contact strictly pseudo-convex CR manifolds. We refer to [5] for

further details.

A (2n + 1)-dimensional manifold M2n+1 is a contact manifold if it is

equipped with a global one-form η such that η∧ (dη)n 6= 0 everywhere. Given a

contact form η, there exists a unique vector field ξ, the characteristic vector

field, satisfying η(ξ) = 1 and dη(ξ, X) = 0 for any vector field X . It is well-

known that there also exists a Riemannian metric g and a (1, 1)-tensor field ϕ

such that

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ), dη(X, Y ) = g(X, ϕY ),

ϕ2X = −X + η(X)ξ,(1)

where X and Y are vector fields on M . From (2), it follows that

(2) ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ).

A Riemannian manifold M equipped with structure tensors (η, g) satisfy-

ing (2) is said to be a contact Riemannian manifold or contact metric

manifold and is denoted by M = (M ; η, g). Given a contact Riemannian man-

ifold M , we define a (1, 1)-tensor field h by h = 1
2Lξϕ, where L denotes Lie

differentiation. The operator h is symmetric and satisfies

(3) hξ = 0, hϕ = −ϕh,
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(4) ∇Xξ = −ϕX − ϕhX,

(5)
g(R(X, Y )ξ, Z) =g((∇Y ϕ)X − (∇Xϕ)Y, Z) + g((∇Y ϕh)X

− (∇Xϕh)Y, Z),

for all vector fields X, Y, Z on M , where ∇ is the Levi-Civita connection and R

the Riemannian curvature tensor.

A contact Riemannian manifold for which ξ is a Killing vector field, is called

a K-contact manifold. It is easy to see that a contact Riemannian manifold

is K-contact if and only if h = 0. For a contact Riemannian manifold M , one

may define naturally an almost complex structure J on M × R by

J
(

X, f
d

dt

)

=
(

ϕX − fξ, η(X)
d

dt

)

,

where X is a vector field tangent to M , t the coordinate of R and f a function on

M ×R. If the almost complex structure J is integrable, M is said to be normal

or Sasakian. We note that every Sasakian manifold is also K-contact, but the

converse is only true in dimension 3. There are several equivalent conditions

for integrability of J in terms of the structure tensors on M . The following two

will be needed further on:

(∇Xϕ)Y = g(X, Y )ξ − η(Y )X,(6)

R(X, Y )ξ = η(Y )X − η(X)Y,(7)

for all vector fields X and Y on M .

Next, we recall the natural relation of contact metric manifolds with CR man-

ifolds. For a contact Riemannian manifold M , the tangent space TpM of M at

each point p ∈ M is decomposed as the direct sum TpM = Dp⊕{ξ}p, where we

denote Dp = {v ∈ TpM : η(v) = 0}. Then D : p → Dp defines a 2n-dimensional

distribution orthogonal to ξ, which is called the contact distribution or the

contact subbundle. For a given contact Riemannian manifold M = (M ; η, g),

its associated almost CR-structure is given by the holomorphic subbundle

H = {X − iJX : X ∈ D}

of the complexification TMC of the tangent bundle TM , where J = ϕ|D, the

restriction of ϕ to D. We see that each fiber Hx, x ∈ M , is of complex dimen-

sion n, H ∩ H̄ = {0} and CD = H⊕ H̄.

We define the Levi form L by

L : D × D → F(M), L(X, Y ) = −dη(X, JY )
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where F(M) denotes the algebra of differential functions on M . Since

dη(X, Y ) = g(X, ϕY ) on a contact metric manifold, the Levi form is Her-

mitian and positive definite. So, the pair (η, L) is a strictly pseudo-convex

(pseudo-Hermitian) almost CR structure on M .

The associated CR structure is integrable if [H,H] ⊂ H. This property does

not hold for a general contact metric manifold. In terms of the structure tensors,

integrability is equivalent to the condition Ω = 0, where Ω is the (1, 2)-tensor

field on M defined as

(8) Ω(X, Y ) = (∇Xϕ)Y − g(X + hX, Y )ξ + η(Y )(X + hX)

for vector fields X, Y on M (see Proposition 4 in Section 3). In this case, the

pair (η, L) is called a strictly pseudo-convex (integrable) CR structure

and (M ; η, L) is called a strictly pseudo-convex CR manifold. From (6)

and (8), we see that the associated CR structure of a Sasakian manifold is

strictly pseudo-convex integrable (cf. [20]). The same is true for the associated

CR structure of any three-dimensional contact metric space.

A pseudo-homothetic or D-homothetic transformation of a contact

metric manifold [29] is a change of structure tensors of the form

(9) η̄ = aη, ξ̄ = 1/a ξ, ϕ̄ = ϕ, ḡ = ag + a(a − 1)η ⊗ η,

where a is a positive constant. From (9), we have h̄ = (1/a)h. By using the

well-known Koszul formula

2g(∇XY, Z) =Xg(Y, Z) + Y g(Z, X)− Zg(X, Y )

− g(X, [Y, Z]) − g(Y, [X, Z]) + g(Z, [X, Y ]),

we have

(10) ∇̄XY = ∇XY + C(X, Y ),

where C is the (1,2)-type tensor defined by

C(X, Y ) = −(a − 1)[η(Y )ϕX + η(X)ϕY ] − a − 1

a
g(ϕhX, Y )ξ.

Remark 1: Integrability of the associated CR structure is preserved under pseu-

do-homothetic transformations. In fact, by direct computations, we have

(∇̄X ϕ̄)Y = (∇Xϕ)Y + (a − 1)η(Y )ϕ2X − (a − 1)/ag(X, hY )ξ.

From this, we easily see that Ω = 0 implies Ω̄ = 0.
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In what follows, an important role will be played by a specific class of contact

metric manifolds, namely those for which it holds

(11) R(X, Y )ξ = (kI + µh)(η(Y )X − η(X)Y ),

where I denotes the identity transformation and k, µ ∈ R. These spaces are

called (k, µ)-spaces and were introduced in [6]. As examples, we have Sasakian

spaces (k = 1 and h = 0) and also the unit tangent sphere bundles of spaces of

constant curvature c (k = c(2− c) and µ = −2c). Since the unit tangent sphere

bundle is non-Sasakian when c 6= 1 [31], this gives us a lot of non-Sasakian

examples.

It is a surprising fact that the condition (11) completely determines the cur-

vature tensor in the non-Sasakian case. Indeed, the following theorem holds.

Theorem 1: Let (M ; η, g) be a non-Sasakian (k, µ)-space. Then k < 1 and the

curvature tensor R is given explicitly by

R(X, Y )Z =(1 − µ/2)(g(Y, Z)X − g(X, Z)Y )

+ g(Y, Z)hX − g(X, Z)hY − g(hX, Z)Y + g(hY, Z)X

+
1 − (µ/2)

1 − k
(g(hY, Z)hX − g(hX, Z)hY )

− µ

2
(g(ϕY, Z)ϕX − g(ϕX, Z)ϕY )(12)

+
k − (µ/2)

1 − k
(g(ϕhY, Z)ϕhX − g(ϕhX, Z)ϕhY ) + µg(ϕX, Y )ϕZ

+ η(X)((k − 1 + (µ/2))g(Y, Z) + (µ − 1)g(hY, Z))ξ

− η(Y )((k − 1 + (µ/2))g(X, Z) + (µ − 1)g(hX, Z))ξ

− η(X)η(Z)((k − 1 + (µ/2))Y + (µ − 1)hY )

+ η(Y )η(Z)((k − 1 + (µ/2))X + (µ − 1)hX)

for all vector fields X, Y, Z on M .

Actually, the complete local geometry is determined by the condition (11),

as is shown in [10], where a full local classification of (k, µ)-spaces is presented.

We finish the introduction by recalling some of the properties of (k, µ)-spaces

which we will make use of further on. Firstly, as proved in [6], the class of (k, µ)-

spaces is invariant under pseudo-homothetic transformations. More precisely,

a pseudo-homothetic transformation with constant a changes (k, µ) into (k̄, µ̄),
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where

(13) k̄ =
k + a2 − 1

a2
, µ̄ =

µ + 2a− 2

a
.

Remark 2: From these formulas, we see that the values k = 1 and µ = 2 are

preserved under D-homothetic transformations. The case k = 1 corresponds to

the class of Sasakian manifolds; for the case µ = 2, we will find a geometric

interpretation further on (see Propositions 10 and 11, and Theorem 12).

Secondly, the associated CR structure of a (k, µ)-space is integrable, i.e.,

these spaces are contact strictly pseudo-convex CR manifolds. This gives us an

expression for ∇ϕ via (8). Moreover, also for ∇h, we have an explicit formula

[6]

(∇Xh)Y =[(1 − k)g(X, ϕY ) − g(X, ϕhY )]ξ(14)

− η(Y )[(1 − k)ϕX + ϕhX ] − µη(X)ϕhY.

Note that this allows to write down explicit expression also for ∇R and for

higher order covariant derivatives of all structure tensors. This was instrumental

in obtaining the local classification mentioned earlier. From (14), it follows

immediately that a (k, µ)-space satisfies g((∇Xh)Y, Z) = 0 for all vector fields

X, Y, Z orthogonal to ξ, i.e., it is an η-parallel contact metric space. Quite

recently, the present authors proved that also the converse holds:

Theorem 2 ([12]): An η-parallel contact metric space is a K-contact space or

a (k, µ)-space.

Finally, (k, µ)-spaces have nice geometrical properties.

Theorem 3 ([9]): A non-Sasakian (k, µ)-space is (locally) contact-homogeneous

and locally ϕ-symmetric (in the strong sense and hence also in the weak sense).

3. The Tanaka–Webster connection

Now, we review the generalized Tanaka–Webster connection ∇̂ on a con-

tact strictly pseudo-convex almost CR manifold M = (M ; η, L) ([30]). It is

defined by

∇̂XY = ∇XY + η(X)ϕY + (∇Xη)(Y )ξ − η(Y )∇Xξ
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for all vector fields X, Y on M . Together with (4), ∇̂ may be rewritten as

(15) ∇̂XY = ∇XY + A(X, Y ),

where we put

(16) A(X, Y ) = η(X)ϕY + η(Y )(ϕX + ϕhX) − g(ϕX + ϕhX, Y )ξ.

We see that the generalized Tanaka–Webster connection ∇̂ has the torsion

(17) T̂ (X, Y ) = 2g(X, ϕY )ξ + η(Y )ϕhX − η(X)ϕhY.

In particular, for a K-contact Riemannian manifold we get

(18) A(X, Y ) = η(X)ϕY + η(Y )ϕX − g(ϕX, Y )ξ.

The generalized Tanaka–Webster connection can also be characterized differ-

ently.

Proposition 4 ([30]): The generalized Tanaka–Webster connection ∇̂ on a

contact Riemannian manifold M = (M ; η, g) is the unique linear connection

satisfying the following conditions:

(i) ∇̂η = 0, ∇̂ξ = 0;

(ii) ∇̂g = 0;

(iii-1) T̂ (X, Y ) = 2L(X, JY )ξ, X, Y ∈ D;

(iii-2) T̂ (ξ, ϕY ) = −ϕT̂ (ξ, Y ), Y ∈ D;

(iv) (∇̂Xϕ)Y = Ω(X, Y ), X, Y ∈ TM .

We note that the Tanaka–Webster connection ([28], [33]) was originally de-

fined for a nondegenerate integrable CR manifold, in which case condition (iv)

reduces to ∇̂J = 0. The above definition is a natural generalization to the

non-integrable case (see also [2]).

Proposition 5: The (generalized) Tanaka–Webster connection is pseudo-ho-

mothetically invariant.

Proof. From (8), (9) and (10) we have

ˆ̄∇XY = ∇̄XY + Ā(X, Y ) = ∇XY + C(X, Y ) + Ā(X, Y )

and

Ā(X, Y ) = a(η(X)ϕY + η(Y )ϕX) + η(Y )ϕhX − g(ϕX, Y )ξ − 1

a
g(ϕhX, Y )ξ.
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Together with the definition of the tensor C, we see that C(X, Y ) + Ā(X, Y ) =

A(X, Y ). Hence, it follows that the generalized Tanaka–Webster connection is

pseudo-homothetically invariant.

Corollary 6: The Tanaka–Webster curvature tensor R̂, its torsion tensor T̂

and their covariant derivatives ∇̂R̂ and ∇̂T̂ are pseudo-homothetically invariant.

We look at R̂(X, Y )Z = ∇̂X(∇̂Y Z) − ∇̂Y (∇̂XZ) − ∇̂[X,Y ]Z in some more

detail for the case when the CR structure is integrable, i.e., ∇̂ϕ = 0. First we

have quite generally

Proposition 7:

R̂(X, Y )Z = −R̂(Y, X)Z, L(R̂(X, Y )Z, W ) = −L(R̂(X, Y )W, Z).

The first identity follows trivially from the definition of R̂. Since the con-

nection is metric with respect to its associated metric g, ∇̂g = 0, the second

identity is proved in a similar way as for the case of Riemanian curvature ten-

sor. Since the Tanaka–Webster connection is not torsion-free, the Jacobi- or

Bianchi-identies do not hold, in general. Before we study the curvature tensor

R̂, from (3), (15) and (16) we have

(∇̂Xh)Y =(∇Xh)Y + A(X, hY ) − hA(X, Y )

=(∇Xh)Y + 2η(X)ϕhY + g((ϕh + ϕh2)X, Y )ξ(19)

+ η(Y )(ϕhX + ϕh2X).

From the definition of R̂, together with (15), taking account of ∇̂η = 0, ∇̂ξ = 0,

∇̂g = 0, ∇̂ϕ = 0 and (19), straightforward computations yield

R̂(X, Y )Z

=R(X, Y )Z + η(Z)
(

ϕP (X, Y ) + ϕ(A(X, hY ) − A(Y, hX))

− ϕh(A(X, Y ) − A(Y, X))
)

− g
(

ϕP (X, Y ) + ϕ(A(X, hY ) − A(Y, hX)) − ϕh(A(X, Y ) − A(Y, X)), Z
)

ξ

− 2g(ϕX, Y )A(ξ, Z) − η(X)A(ϕhY, Z) + η(Y )A(ϕhX, Z)

− η(X)ϕA(Y, Z) + η(Y )ϕA(X, Z)

+ η(A(X, Z))(ϕY + ϕhY ) − η(A(Y, Z))(ϕX + ϕhX)

+ g(ϕX + ϕhX, A(Y, Z))ξ − g(ϕY + ϕhY, A(X, Z))ξ
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where we put P (X, Y ) = (∇Xh)Y − (∇Y h)X . By using (2), (2), (3) and (16),

we have

(20) R̂(X, Y )Z = R(X, Y )Z + B(X, Y )Z,

where

B(X, Y )Z =η(Z)ϕP (X, Y ) − g(ϕP (X, Y ), Z)ξ

− η(Z)[η(Y )(X + hX)− η(X)(Y + hY )]

+ η(Y )g(X + hX, Z)ξ − η(X)g(Y + hY, Z)ξ

+ g(ϕY + ϕhY, Z)(ϕX + ϕhX) − g(ϕX + ϕhX, Z)(ϕY + ϕhY )

− 2g(ϕX, Y )ϕZ

for all vector fields X, Y, Z in M .

4. Tanaka–Webster parallel spaces

As an analogue of locally symmetric contact metric spaces, we now introduce

Tanaka–Webster parallel spaces.

Definition 1: A contact metric space is a Tanaka–Webster parallel space

(T.-W. parallel space, for short) if its Tanaka–Webster torsion tensor T̂ and its

curvature tensor R̂ satisfy

∇̂T̂ = 0, ∇̂R̂ = 0.

In [22], S. Kobayashi and K. Nomizu call a connection invariant by par-

allelism if for any pair of points p and q in M and for any curve γ from p

to q, there exists a (unique) local affine isomorphism f such that f(p) = q

and such that the differential of f at p coincides with the parallel displace-

ment τγ : TpM → TqM along γ. By [22, Corollary 7.6], this is equivalent to

the connection having parallel torsion and curvature tensor. In other words, a

T.-W parallel space is one for which the Tanaka–Webster connection ∇̂ is an

invariant connection by parallelism.

Proposition 8: If a contact metric space satisfies ∇̂T̂ = 0, then it has an

integrable associated CR structure.

Proof. Since ∇̂ξ = 0, ∇̂g = 0 and ∇̂η = 0, it follows from (17) that

g((∇̂ZT )(X, Y ), ξ) = 2g(X, (∇̂Zϕ)Y ) = 2g(X, Ω(Z, Y )) = 2g(X, (∇Zϕ)Y )
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for vector fields X and Y orthogonal to ξ. So, if ∇̂T = 0, then it holds

g((∇Zϕ)X, Y ) = 0 for vector fields X and Y orthogonal to ξ. Using general

properties of the contact metric structure, this is equivalent to

(∇Zϕ)Y = g(Z + hZ, Y )ξ − η(Y )(Z + hZ)

for arbitrary vector fields Y and Z on M and hence to the integrability of the

associated CR structure.

Corollary 9: A T.-W. parallel space is a homogeneous contact strongly

pseudo-convex CR manifold and is analytic with respect to normal coordinate

systems.

Proof. The first claim follows at once form Kiričenko’s generalization [21] of

the Ambrose–Singer theorem [1], [32]. In fact, the tensor A (see (16)) gives a

homogeneous structure with ∇̂g = 0, ∇̂T̂ = 0, ∇̂R̂ = 0, ∇̂ξ = 0, ∇̂η = 0 and

∇̂ϕ = 0.

The second claim is a consequence of [22, Theorem 7.7].

We want to find a complete classification of all T.-W. parallel spaces. First,

we look at the condition ∇̂T̂ = 0.

Proposition 10: A contact metric space satisfies ∇̂T̂ = 0 if and only if it is

either Sasakian or a non-Sasakian (k, 2)-space.

Proof. In general, starting from (17), we have

(∇̂Z T̂ )(X, Y ) =2g(X, Ω(Z, Y ))ξ + η(Y )Ω(Z, hX) − η(X)Ω(Z, hY )(21)

+ η(Y )ϕ(∇̂Zh)X − η(X)ϕ(∇̂Zh)Y.

Suppose now that ∇̂T̂ = 0. Then Ω = 0 by the previous proposition and the

expression (21) reduces to

(22) 0 = (∇̂Z T̂ )(X, Y ) = η(Y )ϕ(∇̂Zh)X − η(X)ϕ(∇̂Zh)Y.

Now, taking Y = ξ and X, Z ⊥ ξ and taking the inner product with U ⊥ ξ, it

follows at once from (19) that

0 = g((∇̂Zh)X, U) = g((∇Zh)X, U).

This means precisely that the contact metric space is η-parallel. So, Theorem 2

tells us that the contact metric space is either K-contact or a (non-Sasakian)

(κ, µ)-space.
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If it is K-contact, the integrability of the associated CR structure implies

that it is actually Sasakian. If it is a non-Sasakian (k, µ)-space, then we put

Y = Z = ξ and X ⊥ ξ in (22) and we use (19), (14) and (3) to obtain

0 = ϕ(∇̂ξh)X = ϕ(∇ξh)X − 2hX = (µ − 2)hX.

Clearly, this implies that µ = 2.

Conversely, if M is Sasakian, then h = Ω = 0 and we easily get ∇̂T̂ = 0

from (21). For a (k, µ)-space, again we have Ω = 0. Further, using (19) and (14)

and the fact that h2 = (1 − k)I for a (k, µ)-space, we obtain ∇̂h = 0. Again,

∇̂T̂ = 0 follows from (21).

Next, we turn our attention to the condition ∇̂R̂ = 0. First we prove the

following

Proposition 11: Let M be a (k, µ)-space. Then M satisfies ∇̂R̂ = 0 if and

only if

- M is a locally ϕ-symmetric Sasakian space, or

- M is a non-Sasakian (k, µ)-space which is three-dimensional or for which

µ = 2.

Proof. First, suppose that M is Sasakian. The Tanaka–Webster curvature is

given as R̂(X, Y )Z = R(X, Y )Z + B(X, Y )Z (see (20)) with now

B(X, Y )Z = − η(Z)[η(Y )X − η(X)Y ] + η(Y )g(X, Z)ξ − η(X)g(Y, Z)ξ

+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ

since h = 0. As the associated CR structure of a Sasakian space is integrable,

we see at once that ∇̂B = 0. Thus, M satisfies ∇̂R̂ = 0 if and only if ∇̂R = 0.

From (15), we get

(∇̂UR)(X, Y )Z =(∇UR)(X, Y )Z + A(U, R(X, Y )Z) − R(A(U, X), Y )Z(23)

− R(X, A(U, Y ))Z − R(X, Y )A(U, Z).

From (16) and (7), it follows that A(U, X) ∼ ξ and g(A(U, R(X, Y )Z), V ) = 0

for any vector fields U, X, Y, Z, V ⊥ ξ. So, (23) implies that

g((∇̂UR)(X, Y )Z, V ) = 0

for any vector fields U, X, Y, Z, V ⊥ ξ, i.e., M is a locally ϕ-symmetric Sasakian

space.
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Conversely, suppose M is Sasakian and locally ϕ-symmetric. In order to

show that ∇̂R = 0, we only need to verify that (∇̂UR)(X, Y )ξ = 0 and

(∇̂ξR)(X, Y )Z = 0 for any vector fields U, X, Y, Z on M . The first one is

immediate using (7). For the second one, we need an additional computation,

where we use the following well-known curvature identities, valid for a Sasakian

space:

R(X, Y )ϕZ − ϕR(X, Y )Z

= g(X, Z)ϕY − g(Y, Z)ϕX + g(ϕX, Z)Y − g(ϕY, Z)X,

R(ϕX, Y )Z + R(X, ϕY )Z

= g(Y, Z)ϕX − g(X, Z)ϕY + g(ϕY, Z)X − g(ϕX, Z)Y

for all vector fields X, Y, Z on M . So, from (23) we compute

(∇̂ξR)(X, Y )Z =(∇ξR)(X, Y )Z + A(ξ, R(X, Y )Z) − R(A(ξ, X), Y )Z

− R(X, A(ξ, Y ))Z − R(X, Y )A(ξ, Z)

=(∇ξR)(X, Y )Z + ϕR(X, Y )Z − R(ϕX, Y )Z

− R(X, ϕY )Z − R(X, Y )ϕZ by (16)

=(∇ξR)(X, Y )Z

= − (∇XR)(Y, ξ)Z − (∇Y R)(ξ, X)Z

=R(ϕX, Y )Z + g(ϕX, Z)Y − g(Y, Z)ϕX

+ R(X, ϕY )Z − g(ϕY, Z)X + g(X, Z)ϕY by (7)

=0.

Next, we suppose that M is a non-Sasakian (k, µ)-space. Then M satisfies

∇̂R̂ = 0 if and only if M satisfies

(∇̂UR)(X, Y )Z = − (∇̂UB)(X, Y )Z

= − η(Z)ϕ(∇̂UP )(X, Y ) + g(ϕ(∇̂UP )(X, Y ), Z)ξ

+ η(Z)[η(Y )(∇̂U h)X − η(X)(∇̂Uh)Y ](24)

− η(Y )g((∇̂Uh)X, Z)ξ + η(X)g((∇̂Uh)Y, Z)ξ

− g(ϕ(∇̂Uh)Y, Z)(ϕX + ϕhX) − g(ϕY + ϕhY, Z)ϕ(∇̂Uh)X

+ g(ϕ(∇̂Uh)X, Z)(ϕY + ϕhY ) + g(ϕX + ϕhX, Z)ϕ(∇̂Uh)Y



Vol. 166, 2008 PSEUDO-HERMITIAN SYMMETRIES 139

where we have, because of (14),

P (X, Y )

=(∇Xh)Y − (∇Y h)X

=(1 − k)
(

2g(X, ϕY )ξ + η(X)ϕY − η(Y )ϕX
)

+ (1−µ)
(

η(X)ϕhY − η(Y )ϕhX
)

.

A straightforward computation, using the explicit expression (12) for the cur-

vature tensor, the formula (14) and the (weak) local ϕ-symmetry of (k, µ)-space

(Theorem 3), yields that the equation (24) holds trivially, except for U = ξ and

X, Y, Z ⊥ ξ. For this specific case, we have

(∇̂ξh)X = (µ − 2)hϕX,

(∇̂ξP )(X, Y ) = (1 − µ)[η(X)ϕ(∇̂ξh)Y − η(Y )ϕ(∇̂ξh)X ]

and the equation (24) reduces to

(∇̂ξR)(X, Y )Z = (µ − 2)[ − g(hY, Z)(ϕX + ϕhX) + g(hX, Z)(ϕY + ϕhY )

− g(ϕY + ϕhY, Z)hX + g(ϕX + ϕhX, Z)hY ].

Next, we use the curvature expression (12) to rewrite the left-hand side and

obtain the condition

(25) (µ − 2)[g(ϕX, Z)hY − g(ϕY, Z)hX + g(hX, Z)ϕY − g(hY, Z)ϕX ]

= (µ − 2)[g(Y, Z)hϕX − g(X, Z)hϕY − g(hϕX, Z)Y + g(hϕY, Z)X ]

for any vector fields X, Y, Z ⊥ ξ. Let {eI = (ei, ϕei), ξ}, i = 1, . . . , n be an

adapted local orthonormal frame such that hei = λei, hϕei = −λϕei with

λ =
√

1 − k (see [6]). Then putting X = Z = eI in (25), and summing with

respect to I, we obtain

(µ − 2)(n − 1)hϕY = 0,

which yields µ = 2 or dim M = 3.

Conversely, it is easy to check that a non-Sasakian (k, 2)-space and a three-

dimensional (k, µ)-space always satisfy the condition (25). This proves the

proposition.

Combining Propositions 10 and 11, we now have

Theorem 12: A contact metric space M is a Tanaka–Webster parallel space

if and only if M is a Sasakian locally ϕ-symmetric space or a non-Sasakian

(k, 2)-space.
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Now, the unit tangent sphere bundle of a Riemannian manifold is a (k, µ)-

space if and only if the base manifold has constant curvature c [6] and then

k = c(2 − c) and µ = −2c. Also, we know that the unit tangent sphere bundle

of a space of constant curvature is locally ϕ-symmetric [14]. So, we have

Corollary 13: The unit tangent sphere bundle of a Riemannian manifold

(M, g) is a Tanaka–Webster parallel space if and only if M has constant curva-

ture +1 or −1.

Remark 3: It was proved in [4] that the base manifold is of constant curvature

c = −1 or c = 1 if and only if the standard contact Riemannian structure

on the unit tangent sphere bundle is a critical point of the functional L(g) =
∫

T1M
Ric(ξ) dV on the set of associated Riemannian metrics M(η) of a given

contact form η, where Ric(ξ) denotes the Ricci curvature in the characteristic

direction ξ.

Here, we define strongly locally pseudo-Hermitian symmetric spaces. Namely,

Definition 2: Let (M ; η, L) be a contact strictly pseudo-convex almost CR mani-

fold. Then M is said to be a strongly locally pseudo-Hermitian sym-

metric space if all characteristic ∇̂-reflections are affine mappings, i.e., they

preserve the Tanaka–Webster connection ∇̂.

Concerning the above property, it was proved in [3], [19] that M is strongly

locally pseudo-Hermitian symmetric if and only if M satisfies the following two

conditions:

∇̂XR̂ = ∇̂X T̂ = 0

for any vector field X ⊥ ξ. So, among the proof of Propositions 10 and 11, we

can find

Theorem 14: A contact strictly pseudo-convex almost CR manifold M is

locally pseudo-Hermitian symmetric in the strong sense if and only if M is

a Sasakian locally ϕ-symmetric space or a non-Sasakian (k, µ)-space.

5. Locally pseudo-Hermitian symmetric spaces

In this section, we want to define an analogue for weakly locally ϕ-symmetric

spaces in pseudo-Hermitian geometry, i.e., with respect to the Tanaka–Webster

connection. A first idea is to define them as contact metric spaces satisfying
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L((∇̂X R̂)(Y, Z)U, V ) = 0 and L((∇̂X T̂ )(Y, Z), V ) = 0 for all vector fields

X, Y, Z, U, V orthogonal to ξ. However, this second condition is always satisfied,

as follows at once from (21). On the other hand, it is not clear whether inte-

grability of the CR structure follows from the above condition on the Tanaka–

Webster curvature tensor alone. Since we would like to have integrability, we

arrive at the following definition.

Definition 3: Let (M ; η, L) be a contact strictly pseudo-convex CR manifold.

Then M is said to be a weakly locally pseudo-Hermitian symmetric space

if M satisfies

L((∇̂XR̂)(Y, Z)U, V ) = 0

for all X, Y, Z, U, V orthogonal to ξ.

From Theorem 14, we immediately have the first examples.

Proposition 15: A Sasakian manifold is a locally pseudo-Hermitian symmet-

ric space if and only if it is locally ϕ-symmetric.

Proposition 16: A non-Sasakian (k, µ)-space is a weakly locally pseudo-Her-

mitian symmetric space.

In the rest of this section, we look for three-dimensional weakly locally pseudo-

Hermitian symmetric spaces. For that purpose, we adopt the notation of [15] for

three-dimensional contact strictly pseudo-convex CR manifolds. So, we consider

on M the maximal open set U1 on which h 6= 0 and the maximal open subset

U2 on which h is identically zero. Suppose that M is non-Sasakian. Then U1

is non-empty and there is a local orthonormal frame field {ξ, e, ϕe} on U1 such

that h(e) = λe, h(ϕe) = −λϕe for some positive function λ. The covariant

derivative is then of the following form (see [15, Lemma 2.1]):

∇ξξ = 0, ∇ξe = −aϕe, ∇ξϕe = ae,

∇eξ = −(λ + 1)ϕe, ∇ϕeξ = (1 − λ)e,

∇ee =
1

2λ
{(ϕe)(λ) + σ(e)}ϕe, ∇ϕeϕe =

1

2λ
{e(λ) + σ(ϕe)}e,(26)

∇eϕe = − 1

2λ
{(ϕe)(λ) + σ(e)}e + (λ + 1)ξ,

∇ϕee = − 1

2λ
{e(λ) + σ(ϕe)}ϕe + (λ − 1)ξ.
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Here, a is a smooth function and σ = ρ(ξ, ·) where ρ denotes the Ricci tensor.

By using (16) we also calculate the (1,2)-tensor field A:

(27)

A(ξ, ξ) = 0, A(e, ξ) = (1 + λ)ϕe, A(ϕe, ξ) = −(1 − λ)e,

A(ξ, e) = ϕe, A(e, e) = 0, A(ϕe, e) = (1 − λ)ξ,

A(ξ, ϕe) = −e, A(e, ϕe) = −(1 + λ)ξ, A(ϕe, ϕe) = 0.

Using (26) and (27), we get the following expressions for ∇̂ from (15):

(28)

∇̂ξξ = 0, ∇̂ξe = (1 − a)ϕe, ∇̂ξϕe = −(1 − a)e,

∇̂eξ = 0, ∇̂ee =
1

2λ
{(ϕe)(λ) + σ(e)}ϕe, ∇̂eϕe = − 1

2λ
{(ϕe)(λ) + σ(e)}e,

∇̂ϕeξ = 0, ∇̂ϕee = − 1

2λ
{e(λ) + σ(ϕe)}ϕe, ∇̂ϕeϕe =

1

2λ
{e(λ) + σ(ϕe)}e.

From this, we calculate the Tanaka–Webster curvature tensor:

R̂(ξ, e)e =∇̂ξ∇̂ee − ∇̂e∇̂ξe − ∇̂[ξ,e]e

=
(

ξ(A) + e(a) + (1 + λ − a)B
)

ϕe,

R̂(ξ, e)ϕe = −
(

ξ(A) + e(a) + (1 + λ − a)B
)

e,

R̂(ξ, ϕe)e = −
(

ξ(B) − ϕe(a) − (1 − λ − a)A
)

ϕe,(29)

R̂(ξ, ϕe)ϕe =
(

ξ(B) − ϕe(a) − (1 − λ − a)A
)

ϕe,

R̂(e, ϕe)e = −
(

e(B) + ϕe(A) + 2(1 − a)
)

ϕe,

R̂(e, ϕe)ϕe =
(

e(B) + ϕe(A) + 2(1 − a)
)

e,

R̂(·, ·)ξ =0.

where we have put A = 1
2λ

(ϕe(λ) + σ(e)), B = 1
2λ

(e(λ) + σ(ϕe)). From (28)

and (29) we obtain

(∇̂eR̂)(e, ϕe)e =∇̂(R̂(e, ϕe)e)

− R̂(∇̂ee, ϕe)e − R̂(e, ∇̂eϕe)e − R̂(e, ϕe)∇̂ee

= − e
(

e(B) + ϕe(A) + 2(1 − a)
)

ϕe,(30)

(∇̂ϕeR̂)(e, ϕe)e = − ϕe
(

e(B) + ϕe(A) + 2(1 − a)
)

ϕe.(31)
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So, if M is weakly locally pseudo-Hermitian symmetric, then it holds

0 =e
(

e(B) + ϕe(A) + 2(1 − a)
)

,

0 =ϕe
(

e(B) + ϕe(A) + 2(1 − a)
)

.

In that case, we also have, using the second condition of (2):

0 =[e, ϕe]
(

e(B) + ϕe(A) + 2(1 − a)
)

=η([e, ϕe])ξ
(

e(B) + ϕe(A) + 2(1 − a)
)

= − dη(e, ϕe)ξ
(

e(B) + ϕe(A) + 2(1 − a)
)

=2ξ
(

e(B) + ϕe(A) + 2(1 − a)
)

.

Thus, we have

Proposition 17: A three-dimensional contact metric space (M ; η, g) is locally

pseudo-Hermitian symmetric if and only if it is locally ϕ-symmetric on U2 and

e(B) + ϕe(A) + 2(1 − a) is constant on U1.

In particular, any three-dimensional contact-homogeneous contact metric

space is weakly locally pseudo-Hermitian, since A, B and a are constant in

that case (see [25]). Using this proposition, we now illustrate that the class

of weakly locally ϕ-symmetric spaces and the class of weakly locally pseudo-

Hermitian symmetric spaces are essentially different.

Example 1: Non-unimodular Lie groups G with left invariant contact metric

structures: From [23] and [25], we know that there exists an orthonormal basis

{e1, e2 = ϕe1, e3 = ξ} ∈ g such that

[e1, e2] = αe2 + 2e3, [e2, e3] = 0, [e3, e1] = γe2,

where α, γ are constants and α 6= 0. We have

he1 = 1/2(Lξϕ)e1 = (γ/2)e1, he2 = −(γ/2), e2.

This corresponds to a = (2 − γ)/2, λ = γ/2, A = 0, B = α. From this, we

get that e(B) + ϕe(A) + 2(1 − a) = γ, constant. Applying Proposition 17, we

see that G is locally pseudo-Hermitian symmetric for all values of α and γ. On

the other hand, it was shown in [11] that the non-unimodular Lie group G is

weakly locally ϕ-symmetric if and only if γ = 0 (the Sasakian case) or γ = −2.

Example 2: Perrone’s non-homogeneous three-dimensional weakly locally

ϕ-symmetric example M1 ([26]): Let M1 = {(x, y, z) ∈ R3(x, y, z) : x 6= 0} be
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the contact three-manifold endowed with the contact form η = xydx + dz. Its

characteristic vector field is given by ξ = ∂/∂z. Take a global frame field

e1 = − 2

x

∂

∂y
, e2 =

∂

∂x
− 4z

x

∂

∂y
− xy

∂

∂z
, e3 = ξ

and define a Riemann metric g such that {e1, e2, e3} is orthonormal with respect

to it. Moreover, we define ϕ by ϕe1 = e2, ϕe2 = −e1 and ϕξ = 0. Then

(η, ϕ, ξ, g) is a contact metric structure. The structure operator h satisfies

he1 = e1, he2 = −e2. In this case, a = 2, λ = 1, A = −1/x, B = 0. This yields

e(B)+ϕe(A)+2(1−a) = 1/x2−2, which is not constant. Hence, the space M1

is weakly locally ϕ-symmetric, but is not locally pseudo-Hermitian symmetric.
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Journal 21 (1969), 117–143.

[32] F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, London

Mathematical Society, Lecture Notes Series 83, 1983.

[33] S. M. Webster, Pseudohermitian structures on a real hypersurface, Journal of Differential

Geometry 13 (1978), 25–41.




